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Abstract

The challenge of streamflow predictions at ungauged locations is primarily attributed
to various uncertainties in hydrological modelling. Many studies have been devoted
to addressing this issue. The similarity regionalization approach, a commonly used
strategy, is usually limited by subjective selection of similarity measures. This paper5

presents an application of a portioned update scheme based on the ensemble Kalman
filter (EnKF) to reduce the prediction uncertainties. This scheme performs real-time
updating for states and parameters of a distributed hydrological model by assimilat-
ing gauged streamflow. The streamflow predictions are constrained by the physical
rainfall-runoff processes defined in the distributed hydrological model and by the cor-10

relation information transferred from gauged to ungauged basins. This scheme is suc-
cessfully demonstrated in a nested basin with real-world hydrological data where the
subbasins have immediate upstream and downstream neighbours. The results suggest
that the assimilated observed data from downstream neighbours have more important
roles in reducing the streamflow prediction errors at ungauged locations. The real-time15

updated model parameters remain stable after short-period assimilation, while their es-
timation trajectories have slow variations, which may be attributable to climate and land
surface changes. Although this real-time updating scheme is intended for streamflow
predictions in nested basins, it can be a valuable tool in separate basins to improve
hydrological predictions by assimilating multi-source datasets, e.g. ground-based and20

remote-sensing observations.

1 Introduction

The streamflow prediction plays a central role in hydrology because it is an important
element for water resources management, the design of hydraulic infrastructures and
flood risk mapping (Srinivasan et al., 2010). Because it is an important component in25

the terrestrial water budget, streamflow is also a direct diagnostic variable measuring
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the impact of climate changes and human activities that act on a given watershed.
Streamflow prediction depends highly on reliable hydrological data and sophisticated
hydrological models. However, hydrological data are often insufficient due to ungauged
or poorly gauged basins in many parts of the world (Sivapalan, 2003). Because of the
scarcity of data, hydrological modelling is also plagued by various sources of uncertain-5

ties. To reduce uncertainties from those hydrological data and hydrological modelling,
the International Association of Hydrological Sciences (IAHS) launched an initiative on
Predictions in Ungauged Basins (PUB) (Sivapalan, 2003; Sivapalan et al., 2003).

Through the past PUB decade, major advances have been achieved including data
acquisition and exploitation, modelling strategies and uncertainty analysis, and catch-10

ment classification and new theory (Hrachowitz et al., 2013). There is a growing con-
sensus that remote sensing techniques provide valuable data for understanding the
land surface hydrological system (Yang et al., 2013). Moreover, considerable progress
has been made on hydrological models (typically the distributed hydrological models)
to capture the physical process associated with the basin rainfall-runoff and snowmelt-15

runoff responses. This progress has fostered specific problem areas in the field: uncer-
tainty quantification with respect to model input forcing, model structures and parame-
ters (Ajami et al., 2007; Vrugt et al., 2008; Gupta et al., 2012). To reduce the uncertainty
from model parameters, one common practice is the parameter calibration by adjusting
model parameters to make the simulated water discharges correspond to the observa-20

tions (typically the data from the outlet of a watershed) (Duan et al., 1992, 1994). How-
ever, a calibrated parameter set with acceptable streamflow simulation performance at
the watershed outlet does not guarantee the performance at interior locations (Zhang
et al., 2008).

The essence of PUB is to transfer information from neighbouring basins to the basins25

of interest (Sivapalan et al., 2003). Such process is generally referred to as hydrologi-
cal regionalization, based on either regression methods or measureable distances (with
respect to physical similarity or spatial proximity) between gauged and ungauged lo-
cations (Hrachowitz et al., 2013). Regionalization techniques of model parameters are
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popular for discharge prediction in ungauged basins. Merz and Blöschl (2004) evalu-
ated the performance of various regionalization methods for parameters of a concep-
tual catchment model, determining that spatial proximity is able to represent the un-
known controls on the runoff regime and the relationships of model parameters within
neighbouring basins. Sellami et al. (2013) presented a model parameter regionalization5

approach based on physical similarity between gauged and ungauged catchments, in-
dicating that similar hydrological behaviour may appear due to physically similar catch-
ments in the same geographic and climatic region. Parajka et al. (2013) reported that
the spatial proximity and geostatistics probably perform better than the regression or
regionalization with a simple averaging of model parameters from gauged catchments.10

One drawback of the regionalization of model parameters is that it often confronts an
arbitrary criterion for selecting the “behavioural” model parameter sets from the gauged
catchment (Sellami et al., 2013). Hrachowitz et al. (2013) provides a comprehensive
review of the parameter regionalization and catchment similarity.

In addition to those parameter regionalization approaches, newly developed data15

assimilation methods are also encouraging and are capable of improving model pre-
dictions by combining multi-source observations (Sivapalan et al., 2003; Troch et al.,
2003). As a typical sequential data assimilation approach, ensemble Kalman filter
(EnKF) is popular in hydrology (Reichle et al., 2002; Evensen, 2003, 2009). EnKF is
attractive in hydrology primarily because it can perform real-time updating with simple20

implementation and it considers various uncertainties in modelling and observations
(Blöschl et al., 2008). The feature of real-time updating is very important for flood fore-
casting (Norbiato et al., 2008). In some current applications, EnKF is mainly dedicated
to dynamic state estimations in which the model parameters are defined or calibrated
in advance (Vrugt et al., 2005; Clark et al., 2008).25

The EnKF method also provides a general framework to perform state-parameter
estimation (Evensen, 2009). It is has been successfully used for parameter estimation
of hydrological models. Moradkhani et al. (2005b) proposed a dual state-parameter es-
timation of hydrological models and made an acceptable application of this method for
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a lumped hydrological model. Wang et al. (2009) presented three constrained schemes
with EnKF to prevent the violation of parameter physical constraints. Most of these
studies performed parameter estimations for lumped hydrological models with a small
number of parameters to be estimated. Xie and Zhang (2010) successfully demon-
strated a joint state-parameter estimation based on EnKF for a distributed hydrological5

model, i.e. Soil and Water Assessment Tool (SWAT), focusing on one dominant pa-
rameter in SWAT. For multiple types of parameter estimation, Xie and Zhang (2013)
developed a portioned update scheme and indicated the potential of such scheme for
streamflow predictions in ungauged basins based on distributed hydrological models.

In this study, we present the application of the portioned update scheme to improve10

streamflow predictions in ungauged locations by assimilating gauged streamflow. This
data assimilation algorithm is fully coupled with the distributed hydrological model,
i.e. SWAT. The state vector and parameters in ungauged subbasins are estimated
when information is transferred from gauged subbasins. In addition to the EnKF-based
scheme, please note that the other data assimilation methods, e.g. the particle filter15

(PF), may also be optional for state-parameter estimation as a few studies have in-
dicated (Moradkhani et al., 2005a; DeChant and Moradkhani, 2012). In the following
sections, we first introduce the EnKF-based data assimilation scheme and give a brief
description of the SWAT model. We then present an application case of a real-world
problem in the Zhanghe River basin in China in which river channels are connected20

and subbasins have nested upstream and downstream neighbours. Three scenarios
regarding different combinations of observed streamflow are designed to discuss the
impact of gauged locations on streamflow predictions. Finally, conclusions are given in
the last section.
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2 Methodology

2.1 EnKF-based state and parameter estimation scheme

To describe the information transfer process from gauged to ungauged locations, we
define a joint state vector X that contains gauged (xg) and ungauged (xu) states:
X = [xg,xu]. Moreover, we consider the diagnostic variables, i.e. the water discharge5

and the evapotranspiration, as model states and include them in the vector X to per-
form streamflow updating in the data assimilation. The joint state vector X and the
parameter vector θ estimation at time t are conditioned on measurements (yt ) from
gauged basins. The information transfer process, i.e. the posterior probability density
function (pdf) p(Xt ,θ t |yt ), can be expressed within Bayes’ framework,10

p(Xt ,θ t |yt ) ∝ p(yt |Xt ,θ t ) ·p(Xt ,θ t |Xt−1,θ t−1), (1)

where p(yt |Xt ,θ t ) is the likelihood function of measurements given model estimations
at time t . Moreover, p(Xt ,θ t |Xt−1,θ t−1) is the prior pdf of X and θ at time t that repre-
sents model forecasting and parameter evolutions.

The updating framework defined in Eq. (1) is well included in and effectively solved by15

sequential data assimilation strategies, typically, the EnKF strategy (Evensen, 1994).
The EnKF strategy operates sequentially with a forecast step and a filter update step.
In the forecasting process, uncertainty propagation is characterised by an ensemble of
model realisations:

X
i−
t = M(X i+

t−1,θ i−
t ,ui

t )+ωi
t , ωi

t ∼ N(0,Qt ), i = 1,2, . . .N (2)20

where “−” and “+” denote the forecast and analysis for the state vectors X and the pa-
rameter vector θ , t is the time step, u is the input forcing vector, and N is the ensemble
size. The model error vector ω is assumed to follow a Gaussian distribution with zero
mean and covariance Qt . Prior to model forecasting using Eq. (2), the model parame-
ters can be perturbed, similar to the forecast of the state vector, to avoid the shrinkage25
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of the parameter ensemble during the updating (Wang et al., 2009). However, the pa-
rameter perturbation is susceptible to over-dispersion in sampling (Moradkhani et al.,
2005b). A kernel smoothing technique is effective to address the over-dispersion while
maintaining a reasonable ensemble spread for the parameters (Liu, 2000; Moradkhani
et al., 2005b; Xie and Zhang, 2013). This technique is briefly expressed as5

θ
i−
t = αθ i+

t−1 + (1−α) θ̄+
t−1 + τi

t , τi
t ∼ N(0, Tt ), (3)

θ̄+
t−1 =

1
n

n∑
i=1

θ i+
t−1, (4)

Tt = h2var
(
θ+

t−1

)
, (5)

where α is the shrinkage factor with a range of (0, 1], typically in [0.95, 0.99], h is the10

smoothing factor defined as α2 +h2 = 1, and Tt is the covariance constrained by the
ensemble variance var(θ+

t ). The prescription of the smoothing factor h depends on the
magnitude of the ensemble variance var(θ+

t−1). When var
(
θ

+
t−1

)
is quite large at the

beginning of data assimilation, h is defined as
√

1−α2 to reduce the ensemble spread.
Moreover, when var

(
θ

+
t−1

)
is too small, it may cause filter divergence. In this scenario,15

h is inflated (h >
√

1−α2) to increase the ensemble spread (h = 1.0 in this study).
With the forecast of the states and parameters, the filter update step is performed

when observations are available. This updating is actually the solving process for
Eq. (1). Here we intentionally create an explicit expression of the updating for gauged
and ungauged states and parameters:20  x i+

g,t

x i+
u,t

θ
i+
t

 =

 x i−
g,t

x i−
u,t

θ
i−
t

+Kt ·
(
y i

t −Hx i+
g,t

)
, (6)
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where y
i
t is the observation vector, which is suitably perturbed with covariance of R

to account for uncertainties in observations, and H is the observation operator which
is linear in this study. The Kalman gain matrix Kt is given by

Kt =

cov(xg,t ,xg,t )
cov(xg,t ,xu,t )
cov(xg,t ,θt )

 ·
(
cov(xg,t ,xg,t )+R

)−1
, (7)

where cov(·) is the covariance operator that is computed from the ensembles of states5

and parameters. Please note the size of the matrix Kt is n×m, where n is the total
number of state variables and parameters and m is the number of observations.

The above equations are commonly used procedures of EnKF with a state-
augmentation technique. It has been successfully used in many cases for real-time
state and parameter estimation (Moradkhani et al., 2005b; Wang et al., 2009; Xie and10

Zhang, 2010). From Eqs. (6) and (7), we can see that EnKF provides a general frame-
work to transfer information from gauged to ungauged basins. However, when used
for parameter estimations in distributed hydrological models, it is vulnerable to corrup-
tion due to spurious covariance computation in Eq. (7), primarily resulting from a large
degree of freedom for high-dimensional vectors of the augmented state. To relieve15

this problem, Xie and Zhang (2013) proposed a partitioned forecast-update scheme
(PU_EnKF) that is inspired by the dual state-parameter estimation algorithm (Morad-
khani et al., 2005b). In the partitioned forecast-update scheme, the parameter set of
a hydrological model is partitioned into different types (Np types in total) based on their
sensitivities. Each type is estimated in an individual loop by repeated forecasting and20

updating. Here, the parameter type maintains an aggregation connotation. A parame-
ter type can contain only one parameter (e.g. for lumped hydrological models) or many
parameters associated with the same number of computational units in distributed hy-
drological models. For example, the parameter CN2 in SWAT (will be introduced in
Sect. 2.2) is considered to be parameter type.25

At time t , the PU_EnKF is recursively applied as follows for Np loops:
13448
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I. Perform parameter evolution using Eq. (3) for the j-th parameter type, producing
a new ensemble of parameters.

II. Run the model N times following Eq. (2) to obtain ensemble predictions for gauged
and ungauged state variables. In the prediction, the j-th parameter type is pre-
scribed with a member of the ensemble produced in step (I), while the others are5

set with the ensemble means that are estimated from previous loops at this time
step and from the previous time step.

III. Compute the Kalman gain matrix using Eq. (7) based on the ensembles of states
and parameters when observations become available at time t .

IV. Update the state vector and the j-th parameter type using Eq. (6).10

V. Compute the ensemble means of the j-th parameter type. These means are esti-
mates of the parameters and are used in step (II) in the subsequent loops for the
estimating other parameter types.

VI. Return to step (I) if j < Np. Otherwise, go to the next time step t + 1. The up-
dated state vector from the loop j = Np is considered as estimates of gauged and15

ungauged state variables; all estimates of parameters are also obtained.

This partitioned update scheme is quite suitable for distributed hydrological mod-
els to estimate high-dimensional parameters. Its capability has been demonstrated in
synthetic cases and it has been successfully used in a real watershed for state and
parameter estimation (Xie and Zhang, 2013). In this study, we apply this scheme to im-20

prove the streamflow prediction in ungauged sites and to estimate model parameters.

2.2 Model description

The distributed hydrologic model, SWAT, is a basin-scale hydrological model developed
by the USDA Agricultural Research Service (Arnold et al., 1998; Arnold and Fohrer,
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2005). In the implementation of SWAT, a basin is partitioned into multiple subbasins
that are then divided into hydrologic response units (HRUs), which consist of unique
land cover, management, and soil characteristics (Neitsch et al., 2001; Gassman et al.,
2007). The HRUs do not contain spatial properties because of their percentile repre-
sentation of the subbasin area and they are the basic computational units in which5

the overall hydrologic balance is simulated, including precipitation partitioning, surface
runoff generation, evapotranspiration (ET), soil water and groundwater movement.

The surface runoff generation is commonly simulated using the Soil Conservation
Service (SCS) model (Rallison and Miller, 1981; Ponce et al., 1996). This model has
only one parameter, i.e. the curve number at moisture condition II (CN2), which is also10

the dominant parameter in SWAT. Actual ET is formulated based on potential ET to ac-
count for evaporation from the plant canopy, transpiration, sublimation and evaporation
from the soil. The soil water movement is characterised by a storage routing tech-
nique that uses the field capacity to dominate redistribution of water between layers.
By infiltration or percolation, a fraction of water below the soil profile enters groundwa-15

ter storage as recharge and is partitioned between shallow and deep aquifers. Base
flow from the shallow aquifer is also routed to river channels. Details regarding these
processes can be found in the SWAT user’s manual by Neitsch et al. (2001).

SWAT contains a large number of spatially varying parameter types to be prescribed
before hydrologic simulation and prediction. These parameters consist of the surface20

roughness, soil properties, land-cover pattern and hydraulic conditions of the river
channel. Although their default values can be prescribed according to lookup tables,
the optimal values must be calibrated on the basis of modelling behaviour and ob-
servations. To reduce the number of calibrating parameters, a sensitivity analysis is
usually required (van Griensven et al., 2006). Considerable effort has been devoted25

to sensitivity analysis for SWAT; several parameters are recognised as the most in-
fluential ones that dominate the model behaviour (Holvoet et al., 2005; Muleta and
Nicklow, 2005; van Griensven et al., 2006). Based on these studies, seven parameters
(also called parameter types) are selected and shown in Table 1. They underpin differ-
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ent hydrologic processes in a basin involving the surface runoff, soil water, baseflow,
groundwater, evapotranspiration and channel water processes. Their ranges are deter-
mined in terms of the lookup tables (Neitsch et al., 2001) and the specific soil and land
use properties of the Zhanghe River basin (Post and Jakeman, 1999).

In addition to these sensitive parameter types, ten hydrologic variables are selected5

for updating in data assimilation (Table 2). The first nine variables are the dynamic
states that characterise water storage status in HRUs or subbasins and partially influ-
ence the diagnostic variables, i.e. ET and the water discharge (Qr). Therefore, along
with both outputs, these states should be updated to guarantee consistent model be-
haviour. In this study, ET is excluded from the state vector because there are no ET10

observations and its passive update in data assimilation does not impact other state
estimations.

The SWAT model is used for this study for two main reasons. First, SWAT is a very
popular distributed hydrological model to predict water, sediment, and agricultural
chemical yields in large, complex watersheds (Gassman et al., 2007). An improved15

version of this model has been used to simulate the water movement in the Zhanghe
River basin, an irrigation district with paddy rice planting (Xie and Cui, 2011). Second,
we have coupled it with the EnKF-based algorithms with a few successful applications
(Xie and Zhang, 2010, 2013; Xie, 2013). Therefore, such a coupled SWAT-EnKF data
assimilation platform is expected to be more powerful and widely used for real-time20

hydrological predictions.

3 Application to a real case

3.1 Study area and database

The data assimilation scheme is applied in the Zhanghe River basin in Hubei Province,
China (Fig. 1). The Zhanghe drains an area of 1129 km2, and the elevation difference25

between the north and the south is more than 400 m. It has a typical subtropical cli-
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mate with an annual mean temperature of 17 ◦C. The annual rainfall in the catchment is
approximately 970 mm per year, although rainfall varies substantially from year to year
depending upon the monsoon strength. This basin is actually an agricultural irrigation
area and its cultivated area accounts for 59 %. Paddy rice is the primary cultivated
plant, which, from May to August, requires irrigation water from the Zhanghe reservoir5

and thousands of local ponds. Owing to intense human activities, including cultivation,
irrigation and drainage, streamflow prediction in this basin is challenge with large un-
certainties (Cai, 2007; Xie and Cui, 2011).

We choose the Zhanghe River basin as a study area because there are relatively
sufficient datasets associated with weather conditions, land use and soil properties,10

and hydrological information. This area has been chosen for a few modelling studies
(Cai, 2007; Xie and Cui, 2011). The land use classification with resolution of 14.25 m
was retrieved based on remote sensing data (Landsat ETM+) for years 2000 and 2001
(Fig. 1b). The land use pattern in this basin exhibits only small changes since 2000.
Therefore, we assume the land use pattern in the period 2004–2006 is the same as in15

2000–2001. The soil map with soil properties, which is used to derive model parame-
ters, is obtained from the local agriculture department. The weather dataset, including
daily temperature, radiation, wind speed and relative humidity, from January 2000 to
December 2006 is available from five stations distributed in and around this basin as
shown in Fig. 1c. Moreover, four streamflow gauges were installed, marked as A, B,20

C and D for simple referencing. Gauge D is the outlet of the basin. Gauge A is lo-
cated at the outlet of a small source subbasin. Because these four gauges observe the
river stages and then transform the data into streamflow according to calibrated rating
curves, daily streamflow data for the period 2003–2006 are available.

The Zhanghe River basin is divided into 20 subbasins based on a digital elevation25

model (DEM) with a resolution of 90 m (Fig. 1c). Thereafter, 98 HRUs are obtained
according to land use and the soil map. With this delineation, Gauge A drains runoff
from a source subbasin, Gauge B drains four, Gauge C drains ten, and Gauge D drains
all the basins.
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3.2 Error quantification

The success of ensemble-based data assimilation methods depends highly on en-
semble generations to quantify errors from model input forcing, parameters and model
structures. Moreover, quantifying observation errors is also critical to account for un-
certainties from measurements and derivations. Due to the dynamics of the SWAT5

model, the errors/uncertainties from the input forcing, parameters and the model struc-
ture are transferred to the water storages (e.g. soil moisture and channel storages) and
diagnostic variables (e.g., streamflow). Although there are more than ten variables that
require updating in SWAT, three of them are perturbed in this study to represent the
modelling uncertainties, i.e. precipitation, soil moisture and streamflow, because the10

other variables are internal and their uncertainties are transferred to the soil moisture
and the simulated streamflow (Xie and Zhang, 2013).

Perturbations to these variables are conducted based on zero-mean Gaussian dis-
tributions. The standard deviations (σ) are proportional to their values,

σx = ηx · x , (8)15

where η is the fractional factor of the standard deviation to the variable x . Thus, there
are four fractional factors corresponding to the precipitation (ηp), soil moisture (ηsm),
simulated streamflow (ηQm) and the observed streamflow (ηQo). With this error quan-
tification, the four standard deviations vary with time, depending on the magnitudes of
the four variables.20

These fractional factors should not only represent the related uncertainties in mod-
elling and the observations but also produce ensemble streamflow predictions with
reasonable ensemble spread (Clark et al., 2008). Based on the uncertainty analysis by
Xie and Cui (2011), the prediction errors with the SWAT model are more than 10 % of
the variables due to the irrigation and drainage practices in the Zhanghe River basin;25

the measurement of precipitation also has the same level of uncertainty. Therefore,
various combinations of factor values are evaluated by running the data assimilation
procedure. Table 3 presents the final choice of the four fractional factors.

13453

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/13441/2013/hessd-10-13441-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/13441/2013/hessd-10-13441-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
10, 13441–13473, 2013

Improving streamflow
predictions at

ungauged locations

X. Xie et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Please note the error quantification remains challenging for land surface data as-
similation. A few newly developed approaches may be a good attempt, e.g. adaptive
filtering (Crow and Reichle, 2008; Reichle et al., 2008). However, we quantify the model
and the observation uncertainties in this study in terms of an experiential and practi-
cal perspective in which large storm events normally induce larger uncertainties in5

modelling and observations. Moreover, an overestimation of uncertainties is a better
practice than underestimation to avoid the ensemble shrinkage (Crow and Van Loon,
2006; Clark et al., 2008).

3.3 Assimilation setup and scenario design

The assimilation process is performed with three successive periods (Xie and Zhang,10

2013). First, the model is prescribed with prior parameters and spun-up within the pe-
riod 1 January 2003 to 30 June 2003 to initialise the model states. At the end of this
period, the seven parameters of the SWAT model are perturbed using the Latin hy-
percube method (Helton and Davis, 2003) with Gaussian distributions. The parameter
means of the Gaussian distributions are set according the lookup table suggested in15

SWAT (Neitsch et al., 2001); the associated variances are constrained to ensure that
random samples are within their respective physically or model-required ranges in Ta-
ble 3. Please note the uniform distribution is more intuitive than the Gaussian and often
also used in sampling (Moradkhani et al., 2005b). In this study, we use the Gaussian
because the lookup table provides favourable prior estimates for the parameters. Af-20

ter the parameter perturbations, the second period begins (1 July 2003–31 December
2003) to perturb the model input forcing, model states and diagnostic variables as
described in Sect. 3.2. This perturbation period is to quantify the uncertainties in pre-
diction and to generate reasonable ensemble spread for subsequent data assimilation.
The third period is the data assimilation period (1 January 2004–31 December 2005)25

in which the observed data of streamflow are assimilated when data are available.
To demonstrate the improvement of streamflow prediction in ungauged locations,

we only assimilate streamflow from one or two of the four gauges and the remaining
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gauges, regarded as pseudo-ungauged locations, are used to validate the performance
of data assimilation. Three scenarios with different combinations of data from the four
gauges are designed:

I. ASS_D: The observed data of streamflow from Gauge D are assimilated; Gauges
A, B and C are assumed as pseudo-ungauged. This scenario is similar to a com-5

mon calibration practice for which only the outlet (Gauge D) discharges are em-
ployed to calibrate the parameters and to extrapolate streamflow of ungauged
subbasins from the outlet.

II. ASS_BD: The observed data of streamflow from Gauge B and D are assimilated;
the other two are regarded as pseudo-ungauged subbasins. This scenario adds10

the data from Gauge B at the upstream in this basin based on scenario ASS_D.

III. ASS_AB: The observed data of streamflow only from Gauge A and B are as-
similated; the others are assumed as pseudo-ungauged subbasins. This scenario
only uses the streamflow from the two gauges at the upstream in this basin.

3.4 Prediction in ungauged locations15

Ensemble streamflow predictions along with parameter estimations are performed for
the three scenarios. To distinguish the improvement of streamflow prediction, a control-
run scenario is performed in which the model parameters are prescribed with the cal-
ibrated estimates of Xie and Cui (2011). The data assimilation performance is evalu-
ated by comparing with the four series of observed streamflow. Although the observed20

streamflow series still contain uncertainties, we consider them to be a benchmark
because the observations are commonly assumed to be the best estimates of “real”
streamflow processes. Therefore, the series of streamflow prediction errors are com-
puted (predictions minus observations) and the root-mean-square error (RMSE) and
the mean absolute error (MAE) are used as comprehensive indexes for evaluations.25
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Figure 2 shows the streamflow errors from the control-run prediction and scenario
ASS_D. The control-run simulation clearly overestimates the peak flow (in rainfall pe-
riods) for the four gauges, while underestimates the base flow in some non-rainfall
periods (e.g. 230th–300th time steps). This poor performance is greatly improved by
assimilating the observed streamflow and considering the uncertainties from the input5

forcing and model states. It may not be surprising that the Gauge D streamflow errors in
ASS_D are less than those in the control-run scenario because the observed stream-
flow from Gauge D is assimilated to update the prediction. For the (pseudo-) ungauged
locations, the streamflow predictions of Gauge A, B and C are also more acceptable
than from the control-run scenario. At Gauge C, for example, the RMSE decreases10

from 3.539 m3 s−1 to 2.014 m3 s−1. Moreover, there is no notable biased prediction due
to the slight overestimations and underestimations for peak flow.

Figure 3 shows the results from scenarios ASS_BD and ASS_AB. Adding an ob-
served gauge (Gauge B) at the upstream in the basin, i.e. the ASS_BD scenario,
provides better streamflow predictions in the pseudo-ungauged subbasins than the15

ASS_D scenario; the RMSE drops to 1.741 m3 s−1. If assimilating the data from the
upstream locations, i.e. the ASS_AB scenario, the improvement is degraded and the
predictions are only slightly better than the control-run scenario. In addition to Gauge C
(for pseudo-ungauged locations), Gauge A, B and D have very favourable streamflow
predictions due to the fact the data from these gauges are assimilated to update the20

predicted streamflow (not shown in Fig. 3).
Along with the updating of model states and diagnostic variables, the model parame-

ters are also estimated. Figure 4 shows examples of real-time parameter updating from
the ASS_D scenario. After approximately 120 time steps, the ensemble trajectories are
nearly stable with slow variations that are probably induced by the changes of land sur-25

face and river channel conditions for runoff generation and routing (Liu et al., 2008;
Troch et al., 2013). At every time step in data assimilation, the parameter samples can
be approximated with Gaussian distributions as shown in the histograms in Fig. 4. This
property is favourable for parameter estimation with ensemble-based data assimila-
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tion. The parameter estimate uncertainties at every time step are represented using
the ensemble spread (EnSp), which is computed based on sample variances (see the
illustration under Fig. 5). At the beginning of the data assimilation, the parameters have
broad ensemble spreads. The spreads quickly shrink after 100 time steps with the evo-
lution of the streamflow assimilation, and remain stable after 400 time steps. Therefore,5

the estimation uncertainty of the parameters decreases with the data assimilation and
state updating. Moreover, the relative stabilities of ensemble trajectories (Fig. 4) and
the ensemble spreads (Fig. 5) imply an attractive potential that it is possible to use
short-term data to retrieve optimal estimates of parameters.

Even though the three scenarios provide different parameter estimates due to the10

assimilation of different observations, encouraging properties of parameter estimations
are achieved in the three scenarios. The parameter estimates require a further valida-
tion to evaluate the performance of the PU_EnKF scheme.

3.5 Validation for parameter estimation

It is difficult to directly validate the estimates of parameters using measurements be-15

cause the SWAT model is a conceptual hydrological model and most parameters do not
have physical meanings. Only a few parameters (e.g. the SOL_AWC in Table 1) can be
measured at local sites; those parameters regarding HRUs, subbasins and river chan-
nels remain difficult to be obtained by sampling experiments. We perform single-run
predictions using the parameter estimates from the three scenarios and evaluate the20

predicted streamflow against observed streamflow. This is a commonly used strategy to
validate parameters of a conceptual hydrological model. For simplicity and consistency,
the three single-run predictions are named ASS_D, ASS_BD and ASS_AB, although
they are neither assimilation-based predictions nor ensemble predictions. Moreover,
the control-run prediction is used for comparison. All four scenarios are run for the pe-25

riod 1 January 2006–31 October 2006. The uncertainties in the input forcing and the
model structure are not considered in these predictions.
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Figure 6 shows the streamflow prediction errors from the four scenarios. Only the
results of Gauge C and Gauge D are shown because they are located at the down-
stream locations in the Zhanghe River basin. The three scenarios using prescribed
parameters with estimates from data assimilation achieve better predictions for the two
gauges than the control-run scenario. The RMSE of Gauge D from the ASS_D sce-5

nario decreases from 5.550 to 3.055. Moreover, the ASS_BD scenario provides the
best predictions among the four scenarios. All of these improvements are attributable
to the encouraging parameter estimations from the data assimilation. The ASS_BD
scenario renders the most reasonable parameter estimations. Comparably, the param-
eter estimates from ASS_D are also satisfactory for streamflow predictions, while the10

estimates from the ASS_AB scenario lead to slight improvements for streamflow pre-
dictions. Therefore, the parameter estimation performance of the three scenarios is
similar to the estimations of diagnostic variables (i.e. the water discharge) as illustrated
in Sect. 3.4. The assimilated observations from downstream, especially the outlet of the
basin, have more important roles than those from upstream for parameter estimation.15

This finding also applies to the streamflow predictions in ungauged subbasins.

4 Conclusions

We present an application of an EnKF-based portioned update scheme for improv-
ing streamflow predictions at ungauged locations. This scheme features real-time up-
dating and simultaneous state-parameter estimation, considering modelling and mea-20

surement uncertainties. Moreover, the scheme constrains the predictions by the phys-
ical rainfall-runoff processes that are defined in the distributed hydrological model
(i.e. the SWAT model) and considers the correlations of states and parameters between
gauged and ungauged subbasins, which are represented by the covariance matrix in
the Kalman gain. With these two constraints, the observed information is successfully25

transferred to ungauged locations.
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The real-word application case suggests that the PU_EnKF scheme performs better
than the control-run simulation (with calibrated parameters) for streamflow predictions
at gauged and ungauged locations. Although only the outlet-gauged data are assim-
ilated, the streamflow predictions at ungauged sites are still acceptable due to low
estimation errors. The downstream data have more important roles in the data assim-5

ilation than those from upstream. This data assimilation scheme provides reasonable
estimates of model parameters for all computational units (i.e. subbasins and HRUs),
including both gauged and ungauged sites, as validated by conventional single-run sim-
ulations. Moreover, the parameter estimates approach nearly stable levels after a small
number of time steps (120 steps in this study). The parameter estimations show slow10

variations that would be an advantage of PU_EnKF to identify the changes of land
surface properties.

Although favourable performance to improve streamflow predictions is obtained us-
ing the EnKF-based scheme, the runoff routing is neglected within the PU_EnKF as-
similation setup because the travel time of generated runoff is less than one day in15

the Zhanghe River watershed. In fact, the time lag of runoff routing is an important
factor for short-time (e.g. the hourly step) flood forecasting (Li et al., 2013; Pan and
Wood, 2013). Moreover, this scheme is intent on PUB for the nested basins in which
the correlations of states and parameters between neighbouring subbasins can be con-
structed. For separate basins in the same climatic regions and land surface conditions,20

assimilating other sources of data (e.g. the remotely sensed soil moisture and bright
temperature) is expected to improve the predictions of hydrological variables (Troch
et al., 2003). Nevertheless, this study provides an encouraging application for PUB by
assimilating streamflow, which is generally regarded as quality observations compared
with the remote sensing data.25
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Table 1. Model parameters to be estimated in data assimilation.

No. Parameter Description Scale∗ Process Min Max
(Type)

1 CN2 SCS runoff curve number for HRU Runoff 35.0 98.0
moisture condition II (–)

2 CH_K Effective hydraulic conductivity Subbasin Channel water 0.02 76.0
of channels alluvium (mm h−1)

3 SOL_AWC Available water capacity of HRU Soil 0.0 1.0
the soil layer (mm mm−1 soil)

4 SURLAG Surface runoff lag coefficient HRU Runoff 1.0 10.0
(day)

5 GWQMN Threshold depth of water in the HRU Groundwater 20.0 1000.0
shallow aquifer required for
return flow to occur (mm)

6 ESCO Plant evaporation compensation HRU Evaporation 0.0 1.0
factor (–)

7 ALPHA_BF Baseflow alpha factor (day) HRU Lateral water 0.0 1.0
∗ The hydrologic variables are with respect to the scales to reflect the related hydrologic processes.
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Table 2. Dynamic hydrologic states and outputs to be updated in data assimilation.

No. Variable Description Scale∗

1 Qsufstor Amount of surface runoff stored or lagged (mm) HRU
2 Qlatstor Amount of lateral flow stored or lagged (mm) HRU
3 Qshall Amount of shallow water stored or lagged (mm) HRU
4 Qrchrg Amount of recharge entering the aquifer (mm) HRU
5 Qpregw Amount of groundwater flow into the main channel (mm) HRU
6 Wsol Amount of water stored in the soil layer for each HRU (mm) HRU×Nlaya

7 Wr Amount of water stored in the reach (m3) Subbasin
8 Wb Amount of water stored in the bank (m3) Subbasin
9 SW Amount of water stored in soil profile (mm) Subbasin
10 Qr Amount of water flow out of reach (Streamflow, m3 s−1) Subbasin (Reach)

∗ Here Nlay is the number of soil layers (Nlay = 4 for this study), and HRU×Nlay means the soil profile of each HRU is
partitioned into Nlay layers.
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Table 3. Fractional factors used to perturb the precipitation (ηp), soil moisture (ηsm), simulated
streamflow (ηQm) and the observed streamflow (ηQo).

Distribution parameter ηp ηsm ηQm ηQo

Values of fractional factor 0.10 0.15 0.15 0.10
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Fig. 1. Zhanghe River basin in China (a), the land use (b) and subbasin distribution with
DEM (c).
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Fig. 2. Streamflow prediction errors from the control-run simulation (left column) and the data
assimilation of scenario ASS_D (right column), i.e. only the observed streamflow from Gauge
D (outlet) is assimilated to update model states and parameters.
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Fig. 3. Streamflow prediction errors from scenarios ASS_BD and ASS_AB. Only the results for
Gauge C are shown because Gauge C is at the outlet of a pseudo-ungauged subbasin in both
scenarios.
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Fig. 4. Estimations of two typical parameters (CN2 and CH_K) from the ASS_D scenario. The
histograms in each plot, fitted with the Gaussian distribution function, represent the ensemble
distribution at three time steps.
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Fig. 5. Ensemble spreads (EnSp) of the seven parameters listed in Table 1: EnSp =√
1

Nu

Nu∑
i=1

VAREn(i), where Nu is the number of HRUs or subbasins and VAREn(i) denotes the

ensemble variance at each HRU or subbasin with respect to each parameter.
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Fig. 6. Streamflow predictions using four scenarios of different parameter sets. Only results of
Gauge C and D are shown.
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